Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

THE FREEZING TEMPERATURES OF SOME FRUITS, VEGETABLES, AND CUT FLOWERS

By R. C. Wright, Physiologist, and George F. Taylor, formerly Biophysicist, Office of Horticultural Crops and Diseases, Bureau of Plant Industry

INTRODUCTION

There is an ever-increasing demand from persons interested in the growing, shipping, and handling of produce for exact data on the freezing points, or the temperatures at which various products freeze.

The extent of damage due to the freezing of produce in transit naturally varies from year to year, but it is usually very heavy, aggregating frequently several hundreds of thousands of dollars during a year. This in general applies not only to such products as apples and potatoes, most of which are grown in the North and harvested and shipped in the late fall and winter, but to products which are grown in the South and Southwest during the winter and shipped to the northern markets. This latter group includes citrus fruits, strawberries, tomatoes, lettuce, string beans, cabbage, cauliflower, eggplant, etc. Cars of these lood products often leave the shipping point under refrigeration and in 24 to 36 hours may pass into a zone of freezing temperatures. As they approach the more northern markets they may be exposed to temperatures ranging several degrees below their freezing point. Under certain conditions when harvested in warm weather some of these products are precooled-that is, rapidly cooled to a refrigerating temperature, either immediately before or directly after they are placed in the car for shipment, in order to delay maturity and consequent deterioration. Where precooling is practiced, it is, of course, essential to know the temperatures to which the product can be lowered with absolute safety.

It is of great importance to the commercial cold-storage man to know the exact freezing points of fruits and vegetables that he handles. In most cases fruits and vegetables other than dried or prepared products when placed in cold storage are alive, and the problem is to keep them alive and healthy throughout their storage period. Since various fruits and vegetables freeze at different temperatures, there is more or less doubt in the minds of those interested as to the proper and safe temperatures at which to hold these various products in storage. One of the problems in the storage of many of these products is to hold them at a temperature low enough to slow down the living processes in order to prolong their storage life
and yet not allow them to be damaged by actual freezing. With many products this storage temperature is only 1 or 2 degrees above the actual freezing point. Of course some products, such as berries, may be purposely kept in a frozen condition below freezing temperature, but this subject comes under the head of freezing storage and will not be discussed here. It is therefore essential in commercial work of this kind that accurate data be at hand on the temperatures to which these products can be exposed without injuring their keeping qualities or market value.

It should be borne in mind, however, that freezing or freezing injury does not always occur when fruit or vegetable products are exposed to temperatures at or below their true freezing points. This is shown in the studies on potatoes reported in a previous publication, ${ }^{1}$ where tubers were cooled as much as $10^{\circ} \mathrm{F}$. below their freezing points without actually having become frozen and again warmed up without apparent injury. The commonly known fact that some kinds of products may be actually frozen and then thawed out under certain conditions with no apparent injurious effects constitutes further evidence on this point. On the other hand, certain commodities such as tomatoes, bananas, and cucumbers are injured if stored at temperatures many degrees above their actual freezing points. This is usually termed chilling injury. It is evident, therefore, that temperatures just above the freezing point can not be regarded as safe for all types or varieties of fruits and vegetables. It is also noticeable that there are some variations in the freezing points of fruits or vegetables of the same variety and from the same lot, as is shown in the tables that follow. Furthermore, it is quite probable that different individuals of the same variety and strain when grown under different conditions will have somewhat different average freezing points. Attention is therefore called to the fact that the freezing points given in the following tables should be considered as danger points; that is, at or near these temperatures, either above or below them, there is a possibility that the product will be in danger of injury by freezing if exposed for a sufficient length of time. These are temperatures at which it is unsafe to hold produce which is to be used for food if it is desired to maintain it for any length of time in a living condition.

The determinations of the freezing points of a number of fruits and vegetables have been made by the Bureau of Plant Industry in connection with its cold-storage investigations. By freezing point is meant the temperature at which ice crystals begin to form within the product, either fruit or vegetable.

Some 10,000 of these determinations have already been made on many varieties of commercially grown fruits and vegetables, and work is being continued. It has been found in some cases that the freezing points of some varieties are liable to slight variations from year to year, even though the same strain grown in the same locality is used. These variations, however, are probably of more importance in the study of the exact causes and results of freezing injury than from the point of view of the commercial cold-storage and produce man, for the variation of a fraction of a degree hardly warrants any change in the treatment of the product. It therefore seems advisable to publish the results of these investigations from

[^0]
time to time as obtained, because of the need for such information and because there is no comprehensive publication on the subject.

The method of determining freezing points has been described in former papers, ${ }^{2}$ and a repetition of this description is not required here.

FREEZING POINTS OF FRUITS

Where several varieties of one kind of fruit were investigated the results are given separately to allow comparisons to be made.
Apples.-Freezing-point determinations were made for a number of authentic varieties of summer or early apples and of fall and winter varieties, most of which were grown on the Arlington Experiment Farm, Rosslyn, Va. The tabulated results given by varieties are shown in Table 1. These results show considerable varietal differences among both summer and winter apples. The average of all summer varieties is practically the same as that of winter varieties, the former being 28.44° while the latter is $28.51^{\circ} \mathrm{F}$. These results show very little difference between the freezing points of easterngrown and western-grown fruit.

Cherries.-Freezing-point determinations were made for seven varieties of cherries grown on the Arlington Experiment Farm. The average of all varieties was $27.81^{\circ} \mathrm{F}$. (Table 1.)

Grapes.-Results were obtained from the freezing of seven American and two European varieties of grapes. The average freezing point of the American varieties was $28.16^{\circ} \mathrm{F}$., and that of the European varieties was 24.60°. (Table 1.)

Oranges.-The average freezing point of the six varieties of oranges studied was $28.03^{\circ} \mathrm{F}$. (Table 1.)

Peaches.-Freezing-point determinations were made for 11 varieties of peaches grown near Leesburg, Va., in the Loudoun orchard of the American Fruit Growers (Inc.). Peaches in the hard-ripe stage were utilized for these tests. The average freezing point of all varieties when hard ripe was found to be $29.41^{\circ} \mathrm{F}$. (Table 1.)

Plums.-Freezing points were obtained for four varieties of plums that were grown in California and purchased on the market and for one variety (Red June) grown at the Arlington Experiment Farm. The variety with the lowest freezing point is Tragedy, with a freezing temperature of $27: 21^{\circ} \mathrm{F}$. The average freezing point of all varieties is 28.53°. (Table 1.)

Strawberries.-Freezing-point determinations were obtained for 22 authentic varieties of strawberries grown at the Maryland Agricultural Experiment Station. The greatest difference was found between the Lupton, which froze at 28.84°, and the Hustler, at $30.48^{\circ} \mathrm{F}$. The average for all varieties was 29.93°. (Table 1.)

[^1]Table 1.-Average and extreme freezing points of fruits

Table 1.-Average and extreme freezing points of fruits-Continued
Summary of Averages

Blackberries, raspberries, and cranberries.-Three varieties of blackberries were frozen, viz, Jumbo, Eldorado, and Crystal White. The two black varieties froze at 29.09° and $29.21^{\circ} \mathrm{F}$., respectively, while the white variety froze at 28.40°. Logan blackberries (eastern grown), froze at 29.51°. One variety each of red and black raspberries was frozen. The Ranere (St. Regis) froze at 30.41°, while the Columbia froze at 28.76°. Four varieties of cranberries grown in Wisconsin and eight varieties grown in Massachusetts were frozen. Considerable differences were found in the freezing points of some of these varieties. While the McFarlin variety froze at 29.02°, Shaw's Success froze at 25.03°. The results for Gebhart Beauty and Mammoth are intermediate, being 26.30° and 26.70°, respectively.

Miscellaneous fruits.-A number of other fruits and berries were investigated, but only one variety was available in each case. The results are therefore not given separately, but are included in the summary of Table 1 covering the average freezing points of all the fruits studied. Two varieties of nuts were frozen, viz, Italian chestnuts, which froze at 23.80° and Persian or so-called English walnuts, which froze at $20.00^{\circ} \mathrm{F}$.

FREEZING POINTS OF VEGETABLES

While several different kinds of vegetables have been used in the freezing-point determinations, those on which the most extensive variety studies have been centered are potatoes, sweet potatoes, and tomatoes.

Potatoes.-Freezing-point determinations were made on 18 different authentic varieties of potatoes. Bulletins 895 and 916 of the United States Department of Agriculture give the results of this study in detail, so they will not be discussed here. The average freezing points of all varieties was $28.92^{\circ} \mathrm{F}$. (Table 2.)

Table 2.-Average and extreme freezing points of potatoes, sweet potatoes, tomatoes, and other vegetables

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Kind and variety} \& \multicolumn{3}{|l|}{Temperatures (${ }^{\circ} \mathrm{F}$.)} \& \multirow{3}{*}{Kind and variety} \& \multicolumn{3}{|l|}{Temperatures (${ }^{\circ} \mathrm{F}$.)}

\hline \& \multirow[b]{2}{*}{Average} \& \multicolumn{2}{|l|}{Extremes} \& \& \multirow[b]{2}{*}{$$
\begin{aligned}
& \text { Aver- } \\
& \text { age }
\end{aligned}
$$} \& \multicolumn{2}{|l|}{Extremes}

\hline \& \& Minimum \& Maximum \& \& \& Minimum \& Maximum

\hline Potatoes: \& \& \& \& Tomatoes (ripe)-Contd. \& \& \&

\hline Triumph \& 29. 20 \& 29. 00 \& 29. 33 \& Stone.-.-.-.....-- \& 30.31 \& 30. 10 \& 30. 58

\hline Irish Cobbler \& 29.67 \& 29.60 \& 29.72 \& Columbia \& 30.62
30.31 \& 30.20
30.29 \& 30.81
30.77

\hline First Early \& 29.00 \& 28.88 \& 29. 00 \& Delaware Beauty \& 30.02 \& 29.95 \& 30. 33

\hline First Early Standard_ \& 28.97 \& 28.74 \& 29. 12 \& Livingston's Globe-- \& 30.58 \& 30.32 \& 30. 88

\hline Ehnola \& 29. 17 \& 29. 01 \& 29.30 \& Livingston's Acme--- \& 30.46 \& 30.41 \& 30. 74

\hline Spaulding No. 4 \& 29. 33 \& ${ }_{28}^{29.21}$ \& 29. 32 \& Greenhouse varieties- \& \& \&

\hline Green Mountain \& 28. 50 \& 28. 38 \& 28. 55 \& Carter's Sunrise_- \& 30.58
30.54 \& 30.06 \& 30.85

\hline Gold Coin. \& 28. 63 \& 28. 40 \& ${ }^{28} 8.70$ \& Stirling Castle.- \& 30.54 \& 30.41 \& ${ }^{30.60}$

\hline Rural New Y orker---- \& 28. 70
28.32 \& 28.46
28.30 \& 28.75
28.48 \& Ave \& 30.38 \& 30. 20 \& 30. 67

\hline U. S. Seedling No. \& \& \& \& \& \& \&

\hline 38774 \& 28.77 \& 28. 65 \& 28. 83 \& Tomatoes (green): Bonny Best \& \& \&

\hline Up-to-dat \& 29. 10 \& 29. 10 \& 29. 10 \& Earliana \& 30. 24 \& 29. 77 \& 30. 58

\hline Producer- Or - \& ${ }^{28.71}$ \& 28. 60 \& 28. 79 \& John Baer \& 30.53 \& 30.48 \& 30. 58

\hline Oritish Queen \& 29. 27 \& 29.62 \& 29. 30 \& Early Mich \& 30.70 \& 30. 53 \& 30. 77

\hline Garnet Chile. \& 28.16 \& 28.00 \& 28.28 \& Red Rock \& 30. 58 \& 30. 34 \& 30. 67

\hline American Gian \& 29.64 \& 29.48 \& 29.68 \& Stone \& 30.15 \& 30.10 \& 30. 38

\hline A verage \& 28.92 \& 28.80 \& 29.02 \& Carter's Sunr
Stirling Castl \& $$
\text { 30. } 29
$$ \& $$
30.20
$$ \& $$
30.59
$$

\hline Sweet potatoes: \& \& \& \& \& \& \&

\hline Big Stem \& 28.05 \& 27.48 \& 28.72 \& Averag \& 30.40 \& 30.21 \& 30.57

\hline Dooley--- \& 28. 46 \& 27.93
28.40 \& ${ }_{28}^{28.91}$ \& Sweet corn: \& \& \&

\hline Georly Car \& 28.59
28.05 \& 28.40
27.79 \& 28.96
28.58 \& Sweet corn: \& 29. 07 \& 28.82 \& 29. 43

\hline Gold Skin- \& 28.47 \& 28.21 \& 28.63 \& Country Gentle \& ${ }_{28}^{29.11}$ \& 28. 63 \& ${ }_{28}^{29.43}$

\hline Improved Big Stem-- \& 28. 76 \& ${ }^{28 .} 26$ \& 29. 00 \& Gowling Man \& 29.61 \& 29.25 \& 28.16
29.85

\hline Miles \& 28. 34 \& 28.16 \& 28.54 \& \& \& \& 29.85

\hline Nancy Hall \& 28. 10 \& ${ }_{27}^{27.54}$ \& ${ }^{28.35}$ \& Averag \& 28.95 \& 28.65 \& 9.2

\hline Mullihan \& 27.64 \& 27.46
28.02 \& ${ }_{28}^{27.93}$ \& Onions: \& \& \&

\hline Porto Rico \& 28.34 \& 27.87 \& 28.68 \& Yellow Danv \& 30.10 \& 29. 61 \& 30. 17

\hline Pumpkin \& 28.98 \& 28.68 \& 29.09 \& White Globe \& 30.20 \& 29.75 \& 30.41

\hline Red Brazil \& 28.40 \& 28. 30 \& 28.63 \& Texas Bermud \& 29.96 \& 29.71 \& 30.13

\hline Red Bermud \& 28.17 \& 27. 98 \& 28. 63 \& \& \& \&

\hline Red Jersey- \& 28. 52 \& 28. 30 \& 28.77 \& Average \& 30. 09 \& 29.69 \& 30.2

\hline Southern Quee Triumph \& 28. 56 \& 28.25
28.26 \& 28.82 \& Lettuce: \& \& \&

\hline Yellow Belmo \& 28.57 \& 28.49 \& 28.82 \& May Queen \& 30. 49 \& 30.38 \& 30. 60

\hline Yellow Jersey \& 28. 97 \& 28. 26 \& 29.05 \& Way Ahead \& 31.54 \& 31.25 \& 31.77

\hline Yellow Strasbu \& 28.72 \& 28. 30 \& 29.00 \& Prize \& 31.57 \& 31.45 \& 31.77

\hline Average \& 28.44 \& 28.10 \& 28.72 \& Averag \& 31. 20 \& 31.03 \& 31.3

\hline Tomatoes (ripe): \& \& \& \& Carrots:
Danvers

den \& 29. 61 \& \&

\hline Bonny Best
Olney Special \& 30.60
30.59 \& 30.48
30.34 \& 30.68
30.67 \& Chantena \& 29. 53 \& 29. 42 \& 29.70

\hline Earliana \& 30.52 \& 30. 43 \& 30.77 \& \& 29. 57 \& 29.42 \& 29.6

\hline John Baer \& 30.57 \& 30. 24 \& 30.90 \& Average \& 29.57 \& 29.42 \& 29.

\hline Landreth \& 30.45 \& 30. 34 \& 30.72 \& Peas: \& \& \&

\hline Early Michiga \& | 30.67 |
| :--- |
| 30.03 | \& 30.19

29.90 \& 30.85
30.38 \& Early Alaska \& 28.93 \& 28.26 \& 29.1

\hline Bloomdale \& 29.99 \& 29.90 \& 30.53 \& Garden. \& 30.93 \& 30.73 \& 30.99

\hline Red Rock \& 30.55 \& 30.48 \& 30.62 \& Laxtonian \& 30.23 \& 30. 03 \& 30. 56

\hline | Trucker's Favorite. |
| :--- |
| New Glory | \& 30.06

29.78 \& 29.63 \& 30.38 \& Average \& 30. 03 \& 29.67 \& 30.25

\hline
\end{tabular}

SUmmary of Averages

Beans (snap)	29.74	29.65	30.06	Lettuce	31. 20	31.03	31.38
Cabbage (Early Jersey				Onions (dry)	30.09	29.69	30.24
W akefield)-------------	31. 18	31.06	31. 34	Onion sets (Yellow			
Carrots	29.57	29.42	29.68	Globe)	29. 50	29.00	29.90
Cauliflower	30. 08	29.95	30.15	Peas (green)	30.03	29.67	30. 25
Celery	29.73	29. 70	30.00	Potatoes.	28.92	28.80	29. 02
Corn, sweet	28.95	28.65	29. 22	Potatoes, sweet	28.44	28.10	28.72
Eggplant	30.41	30.17	30.69	Tomatoes (ripe)	30.38	30. 20	30.67
Kohl-rabi	30.02	29.74	30.22	Turnips.	30.23	30.16	30.48

Sweet potatoes.-The results of freezing 20 more or less common varieties of sweet potatoes are presented in Table 2. The varieties with the lowest freezing points are Big Stem and Georgia, both of which froze at $28.05^{\circ} \mathrm{F}$. The highest freezing points were found
with Pumpkin and Yellow Jersey varieties, which froze at 28.98° and 28.97°, respectively. The average of all varieties was 28.44°.

Tomatoes.-The freezing temperatures of 19 commercially grown varieties of tomatoes were determined and are presented in Table 2. These tomatoes were all grown under the same conditions at the Arlington Experiment Farm. Determinations were made on both ripe and practically full-grown green specimens, such as are usually picked for shipment from the Southern States to the northern markets. With the ripe tomatoes the lowest freezing point ($29.78^{\circ} \mathrm{F}$.) was found in connection with the New Glory variety. The Early Michigan variety froze at 30.67°, which represents the highest freezing point of all the varieties studied. There was no appreciable difference in the average freezing points of ripe and green tomatoes, the averages being 30.38° and 30.40°, respectively.
Sweet corn.-The freezing point of sweet corn varied considerably with the age of the product. There was also considerable variation between varieties. Four varieties were studied. (See Table 2.)

Miscellaneous vegetables.-The freezing points of three varieties of onions, three varieties of lettuce, two varieties of carrots, and three varieties of peas, and of at least one variety each of beans, cabbage, cauliflower, celery, eggplant, kohl-rabi, onions, and turnips are also presented in the body or in the summary of Table 2.

freezing points of cut flowers

Requests have been received for information on the freezing points of such cut flowers as are commonly held in cold storage or shipped in quantities. Determinations were made for peonies, roses, and Easter lilies, and these are presented in Table 3. Results are shown for both petals and leaves. With peonies and roses the petals freeze at temperatures higher than do the leaves. Rose petals froze at 30.04° F., while peony petals did not freeze until a temperature of 29.05° was reached. In the case of Easter lilies the leaves froze before the petals, the latter not succumbing until the temperature
reached 27.50°.

Table 3.-Average freezing points of the petals and leaves of cut flowers

Scope of inquiry	Peony		Rose		Easter lily	
	Petals	Leaves	Petals	Leaves	Petals	Leaves
Number of determinations Freezing point \qquad F	$\begin{array}{r} 12 \\ 29.05 \end{array}$	$\begin{array}{r} 8 \\ 28.39 \end{array}$	30. ${ }^{6}$	28.27	27.50	29.20

RECAPITULATION

Freezing or freezing. injury does not always occur when fruit or vegetable products are exposed to temperatures at or below their actual freezing points. Under certain conditions many of these products can be undercooled; that is, cooled to a point below the true freezing temperature of each and again warmed up without freezing and without apparent injury. Certain products under certain conditions may be actually frozen and then thawed, out without apparent injury, while, on the other hand, some products are injured by chilling if stored at temperatures well above their actual freezing points.

Evidence seems to show that different individuals of the same variety and strain when grown under different conditions will have somewhat different freezing points, and that there are also some variations in the freezing points of products of the same variety and from the same lot.

In view of these facts the freezing points given in this bulletin should be considered only as danger points at or near which, either above or below, there is a possibility of freezing injury if exposed for a sufficient length of time. These are temperatures at which it is unsafe to hold produce for any length of time, as serious danger of frost injury exists.

Fruits.-The average of the freezing points of 9 varieties of summer apples was found to be $28.44^{\circ} \mathrm{F}$., while the average for 14 varieties of fall and winter apples was 28.49° and 28.53° for eastern-grown and western-grown fruit, respectively, showing very little difference between the results for apples of the same varieties.

The freezing points of 7 varieties of cherries averaged $27.81^{\circ} \mathrm{F}$.; 7 varieties of American grapes, $28.16^{\circ} ; 2$ varieties of European grapes, 24.60°; 6 varieties of oranges, 28.03°; 11 varieties of peaches, 29.41°; 4 varieties of plums, $28.53^{\circ} ; 22$ yarieties of strawberries, 29.93°; blackberries, 29.15° : white blackberries, 28.40°; Logan blackberries, 29.51°; red raspberries, 30.41°; black raspberries, 28.76°; cranberries 27.16°; green bananas, peel 29.84°, pulp 30.22°; ripe bananas, peel 29.36°, pulp 26°; currants, 30.21°; gooseberries, 28.91°; grapefruit 28.36°; hard-ripe Bartlett pears, 28.46°; soft-ripe Bartlett pears, 27.83°; Japanese pears (unknown variety), 29.39°; Japanese persimmons (Tanenashi), 28.33°.
Fruits freezing above $30^{\circ} \mathrm{F}$. are green bananas (pulp), currants, and red raspberries. Those freezing between 29° and 30° are green bananas (peel), ripe bananas (peel), blackberries, Logan blackberries, peaches, Japanese pears, and strawberries. Those freezing between 28° and 29° are apples, blackberries (white), gooseberries, grapes, grapefruit, lemons, oranges, Bartlett pears (hard ripe), Japanese persimmons (Tanenashi), plums, and raspberries (black). Those freezing between 27° and 28° are cherries and Bartlett pears (soft ripe). Cranberries and ripe bananas (pulp) freeze between 26° and 27°. European grapes froze at 24.60°, and Italian chestnuts and Persian or so-called English walnuts froze at 23.80° and 20.00°, respectively.

Vegetables.-The average freezing point of 18 varieties of potatoes was $28.92^{\circ} \mathrm{F}$.; for 20 varieties of sweet potatoes, 28.44°; and for 19 varieties of tomatoes (ripe), 30.38°. The freezing points of other vegetables investigated were beans (snap), 29.74°; cabbage, 31.18°; carrots, 29.57°; cauliflower, 30.08°; celery, 29.73°; sweet corn, 28.95°; eggplant, 30.41°; kohl-rabi, 30.02°; lettuce, 31.20°; onions (dry), 30.09°; onion sets, 29.50°; peas (green), 30.03°; turnips, 30.23°.

Two vegetables froze above $31^{\circ} \mathrm{F}$., viz, cabbage and lettuce. Those freezing between 30° and 31° were cauliflower, eggplant, kohl-rabi, onions, peas, tomatoes, and turnips. Those freezing between 29° and 30° were beans, carrots, celery and onion sets. Sweet corn, potatoes, and sweet potatoes froze between 28° and 29°.

Cut flowers.-Determinations of the freezing points of the petals and leaves of Easter lilies, peonies, and roses show that Easter lily petals freeze between 27° and $28^{\circ} \mathrm{F}$.; rose leaves and peony leaves, between 28° and 29°; peony petals and Easter lily leaves, between 29° and 30°; and rose petals, between 30° and 31°.

[^0]: 1 Wright, R. C., and Taylor, George F. freezing injury to potatoes when undercooled. U. S. Dept. Agr. Bul. 916, 15 p., 1 fig., 1 pl. 1921. Literature cited, p. 15.

[^1]: 2 TAylor, George F. SOME improvements on the needle type thermocouple for low-temperatURE WORK. Jour. Ind. and Eng. Chem., v. 12, p. 797-798, 1 fig. 1920.

 Wright, R. C., and Harvey, R. B. the freezing point of potatoes as determined by the thermoelectric method. U. S. Dept. Agr. Bul. 895, 7 p., 1 fig. 1921. Bibliographical footnotes.

 Wright, R. C., and Taylor, George F. Freezing injury to potatoes when undercooled. U. S: Dept. Agr. Bul. 916,15 p., 1 fig., 1 pl. 1921. Literature cited, p. 15.

